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Abstract: This work treats the analysis and control of hybrid systems using hybrid controllers. The goal is to find
the optimal solution according to a performance measure and verifying the solution in order to assure or avoid
some misbehaviour. Abstraction is applied over the events generated by continuous signals in order to modify
the set of controllable and observable events, and apply Ramadge and Wonham theory of Discrete Event
Systems. Optimisation procedure applied over reachabili ty ways obtains the optimal solution and the continuous
signals to apply at the system in order to obtain the best performance measure. Copyright 2000 IFAC
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1. INTRODUCTION

Hybrid systems are dynamic systems with continuous
signals and discrete events, which can be interpreted
by states with continuous dynamic behaviour
approximated by ordinary differential equations. This
work treat a particular class of the hybrid dynamics
systems, systems represented with linear stable
continuous dynamics in each state.

In the hybrid systems control, the goal is to find an
admissible and controllable path between the initial
point in the starting state and the goals End
conditions. A controllable system, is a system, which
enable to drive through the optimal path towards the
goal, with possible uncontrollable events in the path.

We present a methodology to solve the problem to
find the optimal path in respect a performance
measure, which use different software util in order to
obtain: a continuous abstraction, a controllable paths
and the optimal control for a class of the hybrid
dynamic systems.

Ramadge  & Wonham’s theory (Wonham 87) along
with the TCT software gives the Supremal
Controllable Sublanguage of the legal language
generated for a Discrete Event System (DES).
Continuous abstraction transforms predicates over
continuous variables into controllable events, and
modifies the set of uncontrollable and unobservable
discrete events.

The verification of the hybrid system assures
reachabili ty for the solution, safety and liveness for
the system. This is useful to synthetise safety
controllers (Puri and Varaiya 95).
Verification of the Supremal solutions determines the
right paths that control the system, reaching all the

predicates in the transition states and the goal’s end
conditions.

An optimisation method decides the optimal way and
the continuous control to minimise the applied
performance measure.

2. REACHABLE SETS

Let it be the following SISO linear system (1)
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With X ∈ R2 and A stable, and U whiting limit
bounds | U | < Umax

The system evolves in time, to the stationary solution
for the stable systems when stabili sation time has
been reached. The union of the maximum limits on
the different trajectories gives the reach set of the
system with U(t) in an interval range.

The reach set of the system with C=[0 k] is initial
condition independent:

Figure 1 : Reachabili ty set of a state

With X1 and X2 limits as the maximum response to
the Bang-Bang control. Inside of the region there are
all of the reachable states with finite time for this
system (1).
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Reachabil ity analysis of the system must consider
two possible situations, either reaching the bound
limits in the transition conditions or reaching the
goal.

In the first case, the intermediate state reachabili ty
analysis determines if the system crosses the bound
limits of the linear predicate (2), which leads the
system to the next state. Linear predicates are
compound by linear inequaliti es with first order

logics (✳). With iK  ∈ R.
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Theorem 1: If part of the reachable set (figure 1) is
superposed with this region (2), then there exists a
finite signal control U ∈ [Umin , Umax] which activates
the condition transition (2).

In the second case, the point’s reachabili ty in the End
State is to be defined as the abili ty to reach the goal
X f (3) on the hybrid system.

Theorem 2: If the end condition is inside of the
reachable set (figure1), then it exists a finite signal
control U ∈ [Umin , Umax] which translates the system
(1) from some initial condition in the state to the goal
X f(3) of the state space.

Using the combination of this two properties the
verification procedure assures the reachabili ty of the
X f(3) End point for a hybrid system, starting at
another state with initial condition X i(3). We call this
a Reachable Way (RchW). Safety property is assured
if there are no solution (RchW) to any non-permitted
state.

3 CONTINUOUS ABSTRACTION

To apply the RW theory (Wonham 87) of discrete
event systems on a hybrid system, we must abstract
the continuous signals and project the events
generated for these signals, to obtain observable and
controllable sets of events.

Continuous signals produce in to the system events
when this crosses the limit (2). If this event is
deterministic they can be abstracted. The problem is
to determine the controllabilit y of this event, in order
to assign this to the corresponding set,

{ }uooucc ∑∑∑∑ ,,, , controllable, uncontrollable,

observable and unobservable set of events.

The set of uncontrollable events has to be projected
to an other set, by eliminating the uncontrollable

events that are indirectly controllable, or continuous
reachable, by the continuous control U (t).
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These events are those that the region generated by
the linear predicate (2) traverses the reachable set.

Figure 2: predicates δ : X2>K1 and X1>K1 ∧ X2>K2

States with more tan one uncontrollable transition
can change behavior of the graph, when the events
can be converted in to controllable events, this
transitions becomes deterministic.

Figure 3: predicates X2>K1 and X2< K2

The projection over the unobservable events,
generated by the discrete or continuous signals,
eliminating the set of observable events by the
continuous signals analysis (Lemmon and Antsaklis
94).
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Unobservable events detected when the state is out of
the reach set of the model, indicating the use of the
other reach set, this means other model, other state.
Not observable in continuous sense because is not
possible to determine the state change instant by
identification methods. Otherwise is observable in
discrete sense if the state crosses the reach bounds.

Figure 4: Observabili ty of the state

The transition is true unobservable if the event is not
presented and is unidentifiable by continuous
identification, and doesn’ t go out of the reach set of
the current model.
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At the same time the uncontrollable events that has
been eliminated are added to the set of observable
events. A similar procedure will be applied to the
unobservable events.

    0=∑∩∑ ucc   ,   0=∑∩∑ uoo (6)

These sets are disjoint (6)

The RW theory (Wonham 87) defines a Controllable
Sublanguage, with respect to a language that is
composed of erased unobservable events:

KLuK ⊆∩∑ (7)

This means that uncontrollable events present in

some prefix of the Controllable Sublanguage K ,
permitted for the language L of the system, is part of
the Controllable Sublanguage. And the Supremal
Controllable Sublanguage is the union of the
different Controllable Sublanguages.

4 FAULTS

A fault is said to be detectable in discrete sense, if
exist a transition in the system model that leads to
detection in a finite number of steps. And is
detectable in continuous sense if the identification
method determines a failure state.

Fault is isolable in discrete sense if exists a transition,
which gives different behavior or next states for
different faults. And is isolable in continuous sense if
the identification method determines a unique failure
state (Larson 99).

Unobservable events may be failure events or other
events that cause changes in the state system not
recorded by sensors.

The proceed to fault detection is the next:
1) The continuous signal doesn’ t progress

towards the transition
2) Wait the discrete event to indicate the failure

in the system.
3) Analysis of the continuous signals: model

identification.
4) Representation the state in the reachable

sets.
These four steps allow detect a wide range of the
faults. Fault non-identifiables in the steps 1-3, can be
detected if the representation of the state (1) is out of
the reachable set of the current state.

5 OPTIMISATION

To find the optimal solution of RchW to evolve the
system from  X i , to X f (3) going trough different

states minimising the performance measure,
optimisation methods (Kirk 70) are applied over the
set of state sequences of RchW.

In minimum time problem the performance measure
is:

∫=−= ft
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With ft the first instant of time when )(tx intersects

the target set in the end state. Bellman’s principle of
optimali ty is applicable in problems that don’ t
present interaction between lateral states.
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Where Π is the set of states and g(x,p) is the cost of
local state, and V* (x’ ) the optimal cost of the rest.

In the transitions defined for Y limits, the Y
�

 in the
limit ant the signal control U (t) are calculated by
dynamic programming (DP) in order to minimise the
global time cost. The problem is combined of tree
parts, the first is the cost of the first model to
approach the system to the limit, the second part is
the first model to cross the limit, and the third part is
the second model to go through the new limit. The
signal applied U (t) in each part is the Bang-Bang
(Kirk 70) control in order to optimise the
performance measure. In this sense the global
optimisation is obtained as the local optimisation of
the collateral states.

The interaction between states prohibits the use of
local state optimisation. The solution is obtained
recursively taken into account the collateral pairs of
states until they converges (Esteva 98).

6 EXAMPLE:

A simple example to show the possibiliti es of this
method is shown next. Results are not very
interesting to the simplicity of the problem.

Let us consider a car with the following speed model,
in Km/h:
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With U restricted to [0,1] and G the gear number.

Determine the RchW and the optimal control, to
drive the vehicle as fast as possible from stop (initial
state) to end conditions which are defined by a speed



of 90Km/h and acceleration of .15m/s , which is the
maximum speed to safety take the curve.

1) The first step is to define the graph evolution:

2) Second step is to determine the transition
conditions reachability.
The state transitions are triggered in order to
maximize the acceleration, they are actives when the
next state presents a higher acceleration.

1 to 2 condition transitions: when speed ≥28km/h and
acceleration ≥ 1m/s
2 to 3 condition transitions: when speed ≥57km/h and
acceleration ≥ .4m/s
3 to 4 condition transitions: when speed ≥82km/h and
acceleration ≥ .24 m/s
4 to 5 condition transitions: when speed ≥115km/h
and acceleration ≥ .1 m/s

The state transitions’ reachabili ty conditions are the
following:

Figure 5.1: Transition conditions reachability for 1st,
2nd , 3rd and 4th gear
The graph shows that transitions, 1 to 2, 2 to 3, and 3
to 4, are reachable.

The reachabil ty set in finite time is given into these
limits:

 1: 3.9 m/s at 11.25 km/h, -3.9 m/s at 23.5 km/h, and
maximum 35 km/s.
 2: 2.12 m/s at 2.8 km/h, -2.12 m/s at 67.2 km/h, and
maximum 70 km/h .
 3: 1.14 m/s at .66 km/h and -1.14 m/s at 104 km/h
and maximum 105 km/h.

 4: .6 m/s at .18 km/h and -.6 m/s at 139 km/h and
maximum 140 km/h.
 5: .38 m/s at .12 km/h and -.38 m/s at 174 km/h and
maximum 175 km/h.

The end condition’s reachabili ty , 90 km/h of speed
and .15m/s of acceleration, can be seen in the figure:

Figure 5.2 : End conditions reachabili ty.

In the case of multiple solution, the end point’s
reachabili ty is obtained by evaluating the different
solutions in order to determine the optimum. When
the models have similar rising times, the optimal
state will be the one having its reach set limits most
distant to the end point.

3) Apply the abstraction over continuous signals, to
obtain the set of observable and controllable events.
The events generated by the continuous signals are
reachables, this implies to pertain at the set of
controllable events:

'
c∑ = { transition: 1-2, 2-3, 3-4, 4-5}

4) Step to obtain controllable languages.
TCT (Thistle 94) yields the Supremal Controllable
Sublanguages to drive the system from state 1 to state
X (2,3,4,or 5):
Once the reachabili ty criteria of the states are met,
the path trough those states will determine the RchW.

Two possible RchW : 1 -> 2 -> 3 and 1 -> 2 -> 3 ->
4.
The 5th gear doesn’ t appears in the solution because
the transition 4->5 is not reachable before the End
point.
The two possibiliti es must be analysed to determine
the fastest possibili ty. In this case, without delays in
the transitions of the states, the fastest one is 1 -> 2 -
> 3 -> 4, because the 4th gear is faster that the 3th one
when its use is possible.

1 2 3 54

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

Acceleration

Spe

ed

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

20

40

60

80

100

120

140

Acceleration

Sp

eed

-1.5 -1 -0.5 0 0.5 1 1.5
0

20

40

60

80

100

120

Acceleration

Sp
ee
d

-4 -3 -2 -1 0 1 2 3 4
0

20

40

60

80

100

120

140

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4
0

5

10

15

20

25

30

35

Acceleration

Sp

eed



5) Optimization method calculates the control signal
U(t), which concludes that the minimum time is 40
seg.

Figure 5.3: Continuous signal U(t), and discrete G

6) Fault detection.
In cases when the fault can not be detected by
inspection of the continuous signals, for example
when the wind perturbation doesn’ t allow identify the
exact model. Faults can be detected by inspection of
the reachable sets for automatic car.

When the state is out of the current reachable set.
This method determines that the actual state (gear) is
bigger than the expected state when the state crosses
the limits of the reach set for the side of the velocity,
and otherwise in the side of acceleration, the actual
state is a fewer gear.

Figure 5.4: Observable faults

7 CONCLUSION

This paper shows one methodology to work with
hybrid systems in order to control and minimise
performance measures. Integrators can be used in this
methodology for robot path planning, so can be
dynamic scenarios to assure safe paths, that is,
without colli sions.

To automate the procedure is diff icult do to a
particular analysis must be carried out for each
problem, and besides, different optimisation methods
can be applied. Now work is being done in this sense
to generate high level code, which allows the

modelisation (Esteva 99) and verification of the
hybrid systems.
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